Analysing livestock farm odour using an adaptive neuro-fuzzy approach
نویسندگان
چکیده
nt matter & 2007 IAgrE. temseng.2007.03.012 thor. [email protected] (S.X. In livestock farming, odour measurement and reduction are necessary for a cleaner environment, lower health risks to humans, and higher quality of livestock production. There have been many studies on modelling of livestock farm odour by analysing the chemical components in odorous air. It is suggested that the component analysis approaches should be extended to factors such as temperature, relative humidity, and airflow speed. In this paper, a neuro-fuzzy-based method for analysing odour generation factors to the perception of livestock farm odour was proposed. The proposed approach incorporates neuro-adaptive learning techniques into fuzzy logic method. Rather than choosing the parameters associated with a given membership function by trail and error, these parameters could be tuned automatically in a systematic manner so as to adjust the membership functions of the input/output variables for optimal system performance. A multi-factor livestock farm odour model was developed, and both numeric factors and linguistic factors were considered. The proposed approach was tested with a livestock farm odour database. The results demonstrated the effectiveness of the proposed approach in comparison to a typical neural network model. & 2007 IAgrE. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کاملControlling structures by inverse adaptive neuro fuzzy inference system and MR dampers
To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...
متن کاملFraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کامل